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Summary 

The objective of this research was to develop vibration suppression strategies for space structures 
that contain frames and trusses as well as soft elements. Based on our success in earlier work, our 
initial focus was on cable control of frames and trusses and theoretical and experimental results 
showed good vibration attenuation through a combination of two distinct effects: a parametric 
effect that changes structural stiffness and a direct effect that arises due to external forcing. Cable 
actuators do not lend themselves well to control of soft structures and therefore the latter part 
of our research focused on a new method of vibration control, where energy redistribution and 
dissipation would be achieved through sequential application and release of constraints. It was 
shown that application of constraint typically removes kinetic energy from the system and release 
of constraint resets the system for a new cycle of constraint application and removal. Conditions 
that lead to a net loss of kinetic energy per cycle and bounds on the amount of energy removed were 
examined. The experimental component of this work included energy redistribution in a beam with 
electromagnetic brakes that were periodically turned on and off; and theoretical extension of the 
work to soft structures first looked at the problem of passive vibration damping in a string using a 
obstacle at its boundary. For the string vibration problem, damping can be increased significantly 
by using a scabbard-like actuator at one boundary but this active method of constraint application 
and removal can also add energy to the system. 

1. Vibration Control of Frames and Trusses Using Cable Actuators: 

The numerical model of a structure with cable actuators is developed using finite elements (Issa, 
et al., 2010), and it takes the form 

MX + {K- TKg)X= TF (1) 

where M and K are the mass and stiffness matrices of the system, F is the external force vector 
corresponding to unit tension in the cable, X is the vector of nodal displacements and rotations, 
and Kg is the geometric stiffness matrix corresponding to unit cable tension. The total geometric 
stiffness effect from cable tension is of the form TKg since axial loading in the frame elements and 
the stiffness effects due to the cable elements are both proportional to T. It is useful to express 
the equations of motion in terms of modal amplitudes 77. The model is then truncated to n modes 
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Figure 1. Feedback control design for frame structures 

which results in the following equations 

r} + Tr, + (Ü- Tkg)r)= Tf (2) 

where kg is the nxn modal geometric stiffness matrix and fi = diag(w?) is the diagonal matrix of 
zero-tension natural frequencies. To account for damping, modal damping Tfj is introduced where 
T = diag(2£;cjj) is the diagonal modal damping matrix and &'a are the modal damping ratios. In 
Eq.(2), / is the modal forcing vector. The state space form of Eq.(2) is given by 

X\     =     X2 
±2   =   —Qxi — Tx2 + (kgXi + f)u 

(3) 

where x\,X2 G Rn are the modal amplitude and velocity vectors, and tension in the cable is taken 
to be the input, i.e., u = T. We assume the control input to be comprised of a bias tension Tb and 
an active term ü that vanishes as the vibrations decay to zero, i.e., u = ü + Tb. The bias tension 
shifts the equilibrium configuration from (x^x^) — (0,0) to (x^x^) =» (xi,0), where 

xi = [fi-r6fc9p/7b (4) 

where [Ü - T5 kg]  l exists since T;, is less than the critical buckling load. To shift the equilibrium 
configuration back to the origin, we define the following transformation of coordinates and input 

<7i = (xi-xi),        q2 = x2,        u =u-Tb 

The state space description in Eq.(3) can now be written as follows 

Q\    -   92 
q2   =   -^qi-Tq2 + [kg{qi + xi) +f]ü + Tbkgqi 

(5) 

(6) 

For the system described by Eq.(6), the stability properties of this equilibrium point (qj, qj) = (0,0) 
is described with the help of the following theorem: 

Theorem 1: 
Consider the frame structure modeled by Eq.(6) with bias tension T&, Tj, > ümjn > 0. The control 
design in Fig.l, with the output defined by the relation 

V = -(92 + QiQ) [*S(?I + *l) + /] 

renders the equilibrium (qf, q%) = (0,0) asymptotically stable for 

(7) 
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Figure 2. A frame structure 

1. any choice of Q = Q1 £ Rnxn which guarantees the positive-definiteness of the two matrices 

A = 
ft    Q 

Q    I 

2. and the bias tension T\> satisfying 

\TQ   T-Q 

0 < Ümin <Tb<G 
^minX-H ) 

(8) 

(9) 

for Xmax(W) > 0, where Amax(W) is the largest eigenvalue of matrix W, defined as 

w = I Qkg    2kg 

- \  \kg      0 

and Xmin{B) is the smallest eigenvalue of B and 9 € (0,1) is any constant. 

For numerical simulations, we consider the frame structure model depicted in Fig.2, formed by 
welding together aluminum bars of circular cross-section of diameter 6 mm and <5 = 1.0 mm. 
The control model utilized the first two modes of the frame, which correspond to first mode bending 
in the xz plane and simple torsion about the x axis. The natural frequencies of these modes were 
computed using FEA as wi = 7.92 rad/sec and u>2 = 15.20 rad/sec, respectively. The damping 
ratios of these modes were taken to be £j = & = 0.003. To ensure positive-definiteness of matrices 
A and B in Eq.(8), Q was chosen as Q = 0.0157T. In accordance with Eq.(9), the bias tension and 
ümin were chosen as Tj, = 2ümjn = 0.18 N. For the cable placement shown in Fig.2, the geometric 
stiffness matrix, the modal forcing vector and the equilibrium configuration were computed (in SI 
units) and found to be as follows 

Kg — 
0.326 
0.319 

0.319 
-0.328 / = - 

1.13 
1.77 

x 10 -A 
Xj 

0.33 
0.14 

x 10" 

Simulation results are shown in Fig.3 for initial conditions qi(0) = (0,0) and 52(0) = (0.12,0.12) 
in SI units, and control system parameters of r = 1/15 sec, e = 1 x 10-7, and ümax = 30 TV. It is 
clear from the plots that the vibration of the modeled modes are very effectively controlled. 

Experiments were carried out in the laboratory with a frame similar to the one in Fig.2. The 
experimental results can be found in the paper by Issa, et al. (2010). 
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Figure 3. Plot of modal amplitudes q\ = {a\,a2)T and control effort 

2. Energy Dissipation Through Application and Removal of Constraints: 

Consider the JV-dof linear dynamical system 

MX+KX=0 (10) 

, xN}T is where M and K are the TV-dimensional mass and stiffness matrices and X = [2:1,22, 
the vector of independent generalized coordinates. Upon application of a holonomic constraint, the 
dynamics of the system takes the form 

MY + KY = 0 (11) 

<V(N-1)] where M and K are the (A^-l)-dimensional mass and stiffness matrices and Y — [2/1,2/2,' 
is the vector of independent generalized coordinates of the constrained system. 

We denote the unconstrained system as state a and the constrained system as state ß. The 
transition from state a to state ß occurs over the brief interval of time when the constraint is 
applied. If [t~ß,t*ß] denotes this interval, the state transition can be described by the relations 

MX{t+aß) 
WZß) 
MX{t2ß) + Ia^ß 

TaßX{t+
aß) 

(12) 

(13) 

(14) 

(15) 

where Ia^ß is the iV-dimensional impulse of the generalized forces and Taß is a transformation 
matrix. The transition from state ß to state a occurs over a brief interval of time when the 
constraint is removed. If [tßa,tßa] denotes this transition interval, the effect of the transition can 
be described by the relations 

X{t+ßa) 

Xtäa) 

r(tßj 
ntßJ 
TßaY{t+

ßa) 

TßaY{t+ßa) 

(16) 

(17) 

(18) 

(19) 

where Tßa is a constant and unique transformation matrix. The change in kinetic energy over one 



cycle of constraint application and removal is 

AE = \xT{t%) M X{t+Qß) - \xT{raß) M X{t-0) 

and through simplifications, it can be shown to be equal to 

AE m l-XT{t-ß)Ia^ß m --I^M-'l^ß < 0 

In modal coordinates, the change in kinetic energy can be expressed as follows 

AE   =   ^(t-^Mlxit^-Xit-ß) 

(20) 

(21) 

=    WKßWM 
=   WZJ&M 

**(&)-*£(*-/») 
#r-$ Maß) 

(22) 

where 

W (*^)A/x(*-ß) < 0 

A = (is - rTr) 

r = WM§ 

(23) 

(24) 

G RNx(N~1) axe modal matrices in $ = [<h,<h,--- ,</>N] G RNXN
 and § = [*0i,^2,--- ^(N-i) 

states a and ß, respectively, and 1^ is the ./V-dimensional identity matrix. 
To understand the limitations of energy dissipation through application of constraints, consider 

the matrix FTr, where T is defined by Eq.(24). It can be shown that TTr is idempotent and hence 
A = (J;v — rTr) is idempotent. The trace of A can be computed as 

trace[A] = trace[/jv] - trace[rTr] = N - trace[ITT] = N - tracef-T^-i)] = 1 (25) 

From Eq.(25) we deduce that A has one unit eigenvalue and other eigenvalues are all zero. If v is 
the normalized eigenvector of A corresponding to its unit eigenvalue, then eigen decomposition of 
A gives 

A = vvT (26) 

Substitution of Eq.(26) into Eq.(22) gives the expression for the loss in kinetic energy 

T,;u- <\ - AE =--ß1 (t-0)vvJ ß(t~ß) 
1 

uTA(*a/3) 
l2 

<0 (27) 

It is clear from Eq.(27) that the energy of the system will not be dissipated if any one of the 
following conditions hold: 

1. ß{t~g) — 0: the constraint is applied when the system has zero kinetic energy. 

2. vT ß(t~ß) — 0, Vi ^ 0, i = 1,2, ■•• ,N: the constraint is applied when the modal velocity 
vector is normal to the eigenvector of A corresponding to the unity eigenvalue. 

3. Vi = 0, i e ST = {ki, &2, • • • , kT}, ßj(t~ß) = 0, Vj ^ Sr: the kinetic energy of the system lies 
in specific modes that correspond to zero entries of v. 

The first and second conditions can be avoided through a proper choice of time when the constraint 
is applied. The third condition corresponds to a necessary condition for energy entrapment and can 



occur, for example, when the constraint is applied at a node of a system. The sufficient condition 
for energy entrapment is stated next with the help of the following theorem. 

Theorem 1  The energy of a linear system will remain trapped in r specific modes if T contains 
an orthonormal sub-matrix of dimension r. 

For numerical simulations, consider the system in Fig.4 (Issa, et al., 2009). For this system, T, 
A and v were computed as follows: 

0.9599   0.0 \ / 0.0786   0.0   0.2691 
0.0       1.0      ,    A= 0.0      0.0      0.0 

-0.2804   0.0 / V 0.2691   0.0   0.9214 

0.2804 
0.0 

0.9599 
(28) 

rotational spring -(§)-free pin joint -{^-locked pin joint 

Figure 4. A linear system with 3DOF in state a and 2DOF in state ß 

From the entries of T in Eq.(28) it is clear that the condition in Theorem 1 is satisfied with r =\. 
Since r^2 

= 1-0, the energy of the system is trapped in the second mode of state a, which is 
also the second mode of state ß. We can also verify that one element of v, namely V2, is equal to 
zero. Energy entrapment can be verified from the simulation results presented in Fig.5, the initial 
conditions for which were chosen as 

(xi,X2,x3,xi,X2,x3) = (0.006,0.016,0.002,0.00,0.00,0.00) 

in SI units. In this simulation, the system was switched from state a to state ß at the earliest 
opportunity after 0.2 seconds when the two middle bars are aligned, i.e., when 

g(X) = xi - 2x2 + x3 = 0 

and switched back to state a after 0.2 seconds in state ß. The modal amplitudes in state a, namely, 
Hi, H2, ß3, are shown in Fig.5 for the intervals of time when the system is in state a. It is clear from 
these plots that the amplitudes of the first and third modes decay to zero whereas the amplitude 
of the second mode remains constant. The plot of the energy confirms that some energy of the 
system gets trapped in the second mode. This is not surprising since the location of the brake at 
the node of the second mode renders it ineffective. 

3. Modal Disparity and its Experimental Verification: 

For experimental validation of the work presented in the previous section, we investigated the 
free vibration of a beam with a mid-span hinge, as shown in Fig.6. Assuming Euler-Bernoulh beam 
theory, the equation of motion of the beam in the x-y plane can be written as follows 

Ely    +my = 0       if x e (0, L/2) or x € (L/2, L) (29) 
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Figure 5. Plot of modal amplitudes in state a and total energy of the system 

and 

y(0,t)=y(L,t)=0 
y'(0,t) = y'(L,t) = 0 

y((L/2)-,t) = y((L/2)+,t) 
y"((L/2)-,t)=y'"«L/2)+,t) 

y ((L/2)   ,t) = y ((L/2)+,t) = 0 in stiffness state a: hinge released 

y'((L/2)-,t)   =   y'((L/2)+,t) 
y"((L/2)-,t)   =   y"((L/2)+,t) 

in stiffness state ß: hinge locked 

(30) 

(31) 

-   L    . 

o 
Hinge 

*IC 

Figure 6. A flexible clamped-clamped beam hinged in the middle 

In Eq.(29), E is the modulus of elasticity, / is area moment of inertia, and m is the mass per 
unit length of the beam. The beam is modeled using N standard (cubic) finite elements, with two 
degrees of freedom per node (translation and rotation about the z axis). To facilitate the modeling 
of the hinge in its two states, the node at x = L/2 has two rotational degrees of freedom, 9l and 6T', 
corresponding to y (L/2-, i) and y (L/2+, i), respectively. In stiffness state a, the hinge is assumed 
to be free and 6l and 6r are independent.  However, in stiffness state ß, the hinge is locked and 



the constraint 9l = 9r has to be enforced. This is accomplished by adding a penalty of magnitude 
^kT (9

l — 8r)   to the strain energy, that is, by adding a rotational stiffness 

Jtx f       tCf 
1 

-1 
(32) 

to the global stiffness matrix. The parameter kr is set to zero in the stiffness state a and to a large, 
positive value in stiffness state ß. With the additional degree of freedom (in rotation) for the node 
at x = L/2, the finite element model has (2N - 1) degrees of freedom. 

A lumped mass M is added at the central node to account for the mass of the hinge and the 
electromagnetic brake. The transition from stiffness state a to stiffness state ß is achieved by 
activating an electromagnetic brake. The activation of the brake occurs over a brief interval of time 
and results in the application of an action-reaction pair of impulsive moments to the middle node. 
If t € [*äö'*afl] denotes the activation time, the effect of the impulsive moments can be described 
by the relations 

(33) 
yd*) = y(*U) 

MY(t-0) + IQ^0   -   MY(t+0) 

where M is the mass matrix and Y is the vector of nodal degrees of freedom. Ia-+ß is the impulse 
vector with nonzero entries corresponding to the coordinates 0l and 9r and has the form 

Ia^ß = [0,---,C,-C,---,0}1 c 
he 

r(t) dt (34) 

where C is the impulse and r is the impulsive moment. 
The transition from stiffness state ß to stiffness state a is achieved by releasing the brake. If 

* e [*ßa' tpa] denotes the brief time interval over which the brake is released, the degrees of freedom 
and their velocities just prior to and after release of the brake are the same, i.e. 

With this notation, the stiffness parameter kr can be defined as follows 

(35) 

Kf — 
0 stiffness state a 
koo stiffness state ß 

where koo is some large positive number chosen to enforce the constraint 9l — 6r. 
Consider the clamped-clamped beam in Fig.6 with the following properties: 

Table 1. Material and geometric properties of clamped-clamped beam in Fig.6 

Material Aluminum 
Young's Modulus 71 GPa 
Density 2710 Kg/m6 

Dimensions 2.0 x 0.05 x 0.0023 m 
Hinge mass 0.182 Kg 

The natural frequencies of the first four modes of the beam in the two stiffness states are shown in 
Table 2. Since the hinge is located at mid-span, the natural frequencies of even numbered modes in 



the two stiffness states are identical. This is true because even-numbered modes have zero curvature 
at mid-span and are not affected by the state of the hinge, i.e. locked or released. The first four 
mode shapes of the beam in the two stiffness states are provided in Fig.7 for reference. 

Table 2. Natural frequencies of the finite element model of the beam in the two stiffness states 

mode number, i 
^an ^pi vlau/ocW i = \ i = 2 t = 3 i = 4 

stiffness state 
a 1.29 8.34 9.52 27.0 

ß 2.30 8.34 14.68 27.0 

Using modal truncation, the matrix measure of modal disparity was computed using the first four 
modes as follows 

^M* 

/ 0.980 0.000 0.153 0.000 \ 
0.000 1.000 0.000 0.000 
0.139 0.000 0.949 0.000 

\ 0.000 0.000 0.000 1.000 / 

(36) 

The second and fourth rows and columns of the matrix in Eq.(36) maintain the identity structure. 
This is indicative of the fact that even-numbered modes in the two stiffness states are identical. 
The nonzero elements in the off-diagnonal entries of the matrix are indicative of the presence of 
modal disparity between the two stiffness states and indicate how modal energy will be redistributed 
between odd-numbered modes in these two states. 

Consider the scenario where the beam is initially in stiffness state a and vibrating purely in the 
third mode with an amplitude A. The total energy of the beam is equal to Ea — 0.5 A2 w£3. It is 
assumed that there is no damping in the system and that the brake is activated when the beam 
passes through its neutral position. The modal velocities in stiffness states ß can be computed as 

Wtß) 

^aß 

( 0.980 0.000 
0.000 1.000 
0.139 0.000 

V 0.000 0.000 

0.153   0.000 \ 0 
0.000   0.000 0 
0.949   0.000 Aua3 

0.000   1.000 ) 0 

(37) 

Figure 7. Mode shapes of the clamped-clamped beam in the two stiffness states 



Clearly, the energy of the beam is redistributed in modes 1 and 3 in stiffness state ß. The amount 
of energy in these modes are 

Eßx = \ 0.1532A2 w2
3 = 0.1532 Ea,        Eß2 = - 0.9492A2 w2

3 = 0.9492 Ea (38) 

It can be easily shown that the amplitudes of these modes are 0.153J4(CJQ3/U;/3I) = 0.633A and 
0.949A(Lüa3/ujß3) = 0.615A, respectively. These results have been validated through experiments. 
A description of the experimental setup can be found in the paper by Issa, et al., (2008). 

4. Vibration of a String Wrapping/Unwrapping an Obstacle in its Boundary: 

Consider a string vibrating against an obstacle placed at one of its boundaries, as shown in 
Fig.8. We investigate energy dissipation in the string under the following assumptions: 

Figure 8. A string vibrating against an obstacle. 

Al.    The obstacle is rigid and has the following geometry 

V = /(*),        2/(0) = 0, dx 
= 0 

1=0 
(39) 

A2. The string is homogenous and has a constant mass per unit length denoted by p. The tension 
in the string is equal to T and remains constant at all times. The string undergoes transverse 
vibration in the xy plane and is not affected by gravity. 

A3. The amplitude of oscillation of the string is small and therefore the equation of motion of the 
string can be expressed by the standard relation 

dx2)   c2^2;' y/TÜ (40) 

where y(x,t) is the displacement of the string at a distance x from the origin at time t. 

A4. The string wraps around the obstacle during vibration. Over each time step during wrapping, 
a small element of the string comes to rest on the obstacle through perfectly inelastic collisions. 
The wrapping process continues till the freely vibrating portion of the string has no more 
kinetic energy. 

A5.   The surface of the obstacle is not sticky and the string unwraps from the obstacle without 
any loss of energy. 

A6.    At the initial time t = 0, the string has no contact with the obstacle. It is in its mean position 
with zero potential energy and kinetic energy equal to EQ. 

10 



A7. The string continues to vibrate in the mode in which it started its vibration at the initial 
time. This implies that each point of the string, not in contact with the obstacle, has the 
same frequency of vibration at any instant of time, and the number of nodes in the vibrating 
string remains constant. 

A8. The string has no internal damping, i.e., the energy of the string will remain conserved during 
free vibration. 

A general solution to the partial differential equation in Eq.(39) can be written as 

y[x, t) — A (sin Ax — tan XI cos Ax) sincji (41) 

We now consider the boundary conditions at the contact break point. From Fig. 10 we have 

f[x) = y[x, t) =>■ f[x) — A (sin Ax — tan XI cos Ax) sin ut (42) 

Also, the string is tangential to the obstacle at the contact break point x = x, i.e., 

dv 
f'[x) = — [x,t) =>• f'[x) = XA (cos Ax + tanAZ sin Ax) smuit (43) 

From Eqs.(42) and (43) we get 

tanA(Z-x) = -A-M (44) 

which indicates that A can be computed from the value of x. The solution of Eq.(44) is however 
not unique - each non-trivial value of A corresponds to a mode of vibration of the string. 

Let the total energy of the string at any time t be denoted by E. Then, 

E = Epe + Eke = E£s + Ev
pe

h + Eke (45) 

where E°^s is the potential energy of the string wrapped around the obstacle, E^ is the potential 
energy of the freely vibrating string, Epe is the total potential energy, and Eke is the kinetic energy 
of the string. The total potential energy of the string is computed as the product of the tension T 
and elongation of the string 

£pe = T (di = T f{ds -dx) = T f(yjdx2 + dy2 -dx)=T f (y/l + (dy/dx)2 - l)dx 

and £pgS and E^ can be written as 

Egs = TJX(y/l + [dy/dx)2 - l)dx,        E£ = T J_{yJ\ +[dy/dx)2-l)dx 

Since the string conforms to the shape of the obstacle, [dy/dx) = f'[x) for x € [0, x]. By expressing 
[dy/dx) = y'[x,t) for x € [x,l] and simplifying, we get 

Eg   -   Tj*^Jl + [f>[x)}2-l   dx (46) 

Epe     =   T f \y/l + [y'[x,t)}2-l   dx = ^TAsec2 AZJ2A(Z - x) + sin[2A(J - x)]} [g[x)}2[47) 

11 
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Figure 9. Exponential decay in the energy of a string wrapping and unwrapping around an obstacle. The 
plots show energy decay for single-mode vibration in the first four modes with EQ = 0.5 J. 

where g(x) is defined in Alsahlani and Mukherjee (2010(a)). The kinetic energy of the vibrating 
string can be written and simplified as follows 

£ke = \j p[y(x,t)]2dx = ±pu2 sec2 \l{2\(l-x)-sm[2\(l-x)]}{A2- [g(x)]2}       (48) 

From the above equations it is easy to verify that the energy expression has the form 

E = h(x,A) (49) 

For a configuration in which the string is wrapped around the obstacle, the complete solution can 
be determined from the values of x and E using the four-step algorithm described in Alsahlani and 
Mukherjee (2010(a)). 

For numerical simulations, consider a string with 

T = 1 N,        p = 0.025 kg/m,        i = 4m (50) 

The obstacle is assumed to be a circle of radius R and center coordinates (x,y) = (0,i?), i.e., 

y = f(x) = R- \AR
2
 - x2,        0<x<R (51) 

Figure 9 plots the decay in energy as a function of time for vibration in the first four modes with 
EQ — 0.5 J. The following observations can be made: 

For any mode of oscillation, it can be seen that the percentage energy loss is higher for higher 
values of EQ. This is not surprising since higher values of EQ results in higher kinetic energy and 
greater length of wrapping, as evident from the values of Xk in Table 3, and consequently more 
energy loss through inelastic collision. 

The percentage energy loss is higher for higher modes of oscillation for the same value of EQ . 
This is true for the same number of cycles as well as for the same length of time and is due to the 
fact that the velocities of the string associated with higher frequencies are higher in higher modes, 
and as a consequence the loss upon impact is higher. The value of Xk is less for the higher modes 
but this does not have a significant effect on percentage of energy loss. 
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5. Vibration Control of a String Using a Scabbard-Like Actuator: 

Consider the vibrating string in Fig.lO(a), that passes through a scabbard located at its left 
boundary. At time t — tc, the scabbard is moved instantaneously to the right by distance xo along 
the mean position of the string. This is shown in Fig. 10(b). At some future time t = tT,tr > tc, the 
scabbard is moved back to its original position. To investigate the effect of application and removal 
of the scabbard on the vibration of the string, we assume that the movement of the scabbard 
imposes a zero-displacement constraint over the length interval x G [0,xo). The displacement and 
velocity of the string over the remaining interval x G [XQ, I] remains unchanged immediately after 
movement of the scabbard. Additionally, at time t = tT, tT > tc, the scabbard is instantaneously 
moved back to its original position, i.e., to the left by a distance XQ along the mean position of the 
string. The displacement and velocity of the string over the interval x G [xo,l] remains unchanged 
immediately after movement of the scabbard. 

Figure 10. A zero-displacement constraint is applied to the string at time t = tc over the length segment 
x € [0, xo) using a scabbard. 

We skip the mathematical development here which can be found in Alsahlani and Mukherjee 
(2010(b)) and present simulation results for one cycle of constraint application and removal. 

We consider a string of length I = 4 m, mass per unit length p = 0.25 kg/m, and tension T = 1 
N, vibrating in its first mode with unit amplitude AQ — 1 m. At t = 0 the string is assumed to 
pass through its mean position, and the equation of motion of the string is 

yo(x,t) = sin(-x) sin(-t) (52) 
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Figure 11. (a) Position of the string at different time instants (b) Percentage change in energy of the string 
due to application of the constraint for different values of XQ and tc. 

The time period of oscillation of the string is 4 sec and Fig. 11 (a) shows the shape of the string 
at different instants of time over the interval t G [1.0,3.0] sec. The string has maximum potential 
energy at t = 1.0 sec and t = 3.0 sec, and maximum kinetic energy at t = 2.0 sec. 

We present simulation results for percentage change in energy due to constraint application 
for xo G {0.01,0.011,0.021,-■■ ,0.091,0.101} and tc G [1.7,2.3] sec. The results, shown in Fig.ll(b), 
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indicate that the energy of the string increases if the constraint is applied when the string is far 
away from the mean position, and decreases if the constraint is applied when the string is near its 
mean position, irrespective of the value of Xo. Upon application of the constraint, the potential 
energy of the string increases. This increase is large when the string is far away from its mean 
position, and although the constraint removes the kinetic energy of a portion of the string, there 
is a net gain in energy. When the string is near its mean position, the increase in energy due 
to change in potential energy is small compared to the loss of kinetic energy and as a result the 
net change in energy is negative. When the string is at its mean position, there is no change in 
potential energy upon application of the constraint and consequently the energy loss is maximum 
in this configuration. For the same value of tc, a larger value of XQ results in a larger increase in 
potential energy and a larger decrease in kinetic energy. 

We have investigated the effect of application of the constraint on the dynamics of the string 
with arbitrary initial conditions such that sequential application and removal of constraints can be 
explored as a strategy for vibration suppression - see Alsahlani and Mukherjee (2010). 
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